Opportunistic Pathogen Porphyromonas gingivalis Modulates Danger Signal ATP-Mediated Antibacterial NOX2 Pathways in Primary Epithelial Cells

نویسندگان

  • JoAnn S. Roberts
  • Kalina R. Atanasova
  • Jungnam Lee
  • Gill Diamond
  • Jeff Deguzman
  • Chul Hee Choi
  • Özlem Yilmaz
چکیده

Porphyromonas gingivalis, a major opportunistic pathogen in the etiology of chronic periodontitis, successfully survives in human gingival epithelial cells (GECs). P. gingivalis abrogates the effects of a host danger molecule, extracellular ATP (eATP)/P2X7 signaling, such as the generation of reactive oxygen species (ROS) via the mitochondria and NADPH oxidases (NOX) from primary GECs. However, antimicrobial functions of ROS production are thoroughly investigated in myeloid-lineage immune cells and have not been well-understood in epithelial cells. Therefore, this study characterizes antibacterial NOX2 generated ROS and host downstream effects in P. gingivalis infected human primary GECs. We examined the expression of NOX isoforms in the GECs and demonstrate eATP stimulation increased the mRNA expression of NOX2 (p < 0.05). Specific peptide inhibition of NOX2 significantly reduced eATP-mediated ROS as detected by DCFDA probe. The results also showed P. gingivalis infection can temporally modulate NOX2 pathway by reorganizing the localization and activation of cytosolic molecules (p47phox, p67phox, and Rac1) during 24 h of infection. Investigation into downstream biocidal factors of NOX2 revealed an eATP-induced increase in hypochlorous acid (HOCl) in GECs detected by R19-S fluorescent probe, which is significantly reduced by a myeloperoxidase (MPO) inhibitor. MPO activity of the host cells was assayed and found to be positively affected by eATP treatment and/or infection. However, P. gingivalis significantly reduced the MPO product, bactericidal HOCl, in early times of infection upon eATP stimulation. Analysis of the intracellular levels of a major host-antioxidant, glutathione during early infection revealed a substantial decrease (p < 0.05) in reduced glutathione indicative of scavenging of HOCl by P. gingivalis infection and eATP treatment. Examination of the mRNA expression of key enzymes in the glutathione synthesis pathway displayed a marked increase (p < 0.05) in glutamate cysteine ligase (GCL) subunits GCLc and GCLm, glutathione synthetase, and glutathione reductase during the infection. These suggest P. gingivalis modulates the danger signal eATP-induced NOX2 signaling and also induces host glutathione synthesis to likely avoid HOCl mediated clearance. Thus, we characterize for the first time in epithelial cells, an eATP/NOX2-ROS-antibacterial pathway and demonstrate P. gingivalis can circumvent this important antimicrobial defense system potentially for successful persistence in human epithelial tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The activation of pyrin domain-containing-3 inflammasome depends on lipopolysaccharide from Porphyromonas gingivalis and extracellular adenosine triphosphate in cultured oral epithelial cells

BACKGROUND Gingival epithelial cells are the major population of the gingival tissue, acting as the front-line defense against microbial intrusion and regulating the homeostasis of the periodontal tissue in health and disease via NLR family pyrin domain-containing-3 (NLRP3) inflammasome, which recognizes pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). The aim of this study...

متن کامل

Porphyromonas gingivalis modulates Pseudomonas aeruginosa-induced apoptosis of respiratory epithelial cells through the STAT3 signaling pathway.

Pseudomonas aeruginosa is an important opportunistic bacterial pathogen, causing infections of respiratory and other organ systems in immunocompromised hosts that may invade and proliferate in mucosal epithelial cells to induce apoptosis. Previous studies suggest that oral bacteria, especially gram-negative periodontal pathogens, may enhance P. aeruginosa invasion into respiratory epithelial ce...

متن کامل

Nucleoside-Diphosphate-Kinase of P. gingivalis is Secreted from Epithelial Cells In the Absence of a Leader Sequence Through a Pannexin-1 Interactome

Nucleoside-diphosphate-kinases (NDKs) are leaderless, multifunctional enzymes. The mode(s) of NDK secretion is currently undefined, while extracellular translocation of bacterial NDKs is critical for avoidance of host pathogen clearance by opportunistic pathogens such as Porphyromonas gingivalis. P. gingivalis-NDK during infection inhibits extracellular-ATP (eATP)/P2X7-receptor mediated cell de...

متن کامل

P2X4 Assembles with P2X7 and Pannexin-1 in Gingival Epithelial Cells and Modulates ATP-induced Reactive Oxygen Species Production and Inflammasome Activation

We have previously reported that Porphyromonas gingivalis infection of gingival epithelial cells (GEC) requires an exogenous danger signal such as ATP to activate an inflammasome and caspase-1, thereby inducing secretion of interleukin (IL)-1β. Stimulation with extracellular ATP also stimulates production of reactive oxygen species (ROS) in GEC. However, the mechanism by which ROS is generated ...

متن کامل

Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis.

Porphyromonas gingivalis, a gram-negative anaerobe, is a major etiological agent in the initiation and progression of severe forms of periodontal disease. An opportunistic pathogen, P. gingivalis can also exist in commensal harmony with the host, with disease episodes ensuing from a shift in the ecological balance within the complex periodontal microenvironment. Colonization of the subgingival ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017